Abstract

AbstractHumans rely on their fingers to sense and interact with external environment. Understanding the tribological behavior between finger skin and object surface is crucial for various fields, including tactile perception, product appearance design, and electronic skin research. Quantitatively describing finger frictional behavior is always challenging, given the complex structure of the finger. In this study, the texture and sliding direction dependence of finger skin friction was quantified based on explicit mathematic models. The proposed double-layer model of finger skin effectively described the nonlinear elastic response of skin and predicted the scaling-law of effective elastic modulus with contact radius. Additionally, the skin friction model on textured surface considering adhesion and deformation factors was established. It revealed that adhesive term dominated finger friction behavior in daily life, and suggested that object texture size mainly influenced friction-induced vibrations rather than the average friction force. Combined with digital image correlation (DIC) technique, the effect of sliding direction on finger friction was analyzed. It was found that the anisotropy in finger friction was governed by the finger’s ratchet pawl structure, which also contributes to enhanced stick-slip vibrations in the distal sliding direction. The proposed friction models can offer valuable insights into the underlying mechanism of skin friction under various operating conditions, and can provide quantitative guidance for effectively encoding friction into haptics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call