Abstract
Diminution of oxidative stress-mediated diseases is an essential pharmaceutical objective in modern biomedical research. The present work stresses upon the efficient and eco-friendly synthesis of an array of novel diversely functionalized pyrrole derivatives which are found to be antioxidants with reactive oxygen species (ROS) shielding competency against the deleterious consequence of oxidative stress. The results of the investigation displayed the effect of structural modification of the pyrrole derivatives on their respective antioxidant properties to various ROS. Noteworthy, the pyrrole moiety bearing 4-hydroxycoumarin or 2-hydroxy-1,4-naphthoquinone as substituent showed outstanding defensive potency towards OH and O2- while, nitrogen atom linked with aliphatic side-chain in the pyrrole scaffold made a strong affirmative impression in DPPH scavenging assay. More interestingly, an influencing reducing power was observed in pyrrole derivatives carrying cyclohexane 1,3-dione as one of the substituents. To have a comprehensive acuteness into the antioxidant capacity of the synthesized pyrrole derivatives against Trolox as a standard antioxidant, a crucial approach was taken into account by calculating TEAC (Trolox Equivalent Antioxidant Capacity) in case of OH and DPPH scavenging activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.