Abstract

Selenoprotein H is a recently identified member of the selenoprotein family whose function is not fully known. Previous studies from our laboratory and others showed that Drosophila melanogaster selenoprotein H is essential for viability and antioxidant defense. In this study we investigated the function of human selenoprotein H in murine hippocampal HT22 cells engineered to stably overexpress the protein. After treatment of cells with L-buthionine-(S,R)-sulfoximine to deplete glutathione, selenoprotein H-overexpressing cells exhibited higher levels of total glutathione, total antioxidant capacities, and glutathione peroxidase enzymatic activity than did vector control cells. Overexpression of selenoprotein H also up-regulated the mRNA levels of endogenous selenoprotein H, glutamylcysteine synthetase heavy and light chains, and glutathione S-transferases Alpha 2, Alpha 4, and Omega 1. The amino acid sequence of selenoprotein H contains four putative nuclear localization sequences and an AT-hook motif, a small DNA-binding domain first identified in high mobility group proteins. Chromatin immunoprecipitation using a green fluorescent protein-selenoprotein H fusion revealed binding to sequences containing heat shock and/or stress response elements. Thus, selenoprotein H is a redox-responsive DNA-binding protein of the AT-hook family and functions in regulating expression levels of genes involved in de novo glutathione synthesis and phase II detoxification in response to redox status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.