Abstract

Modulation of the structural diversity of diphenylalanine-based assemblies by molecular modification and solvent alteration has been extensively explored for bio- and nanotechnology. However, regulation of the structural transition of assemblies based on this minimal building block into tunable supramolecular nanostructures and further construction of smart supramolecular materials with multiple responsiveness are still an unmet need. Coassembly, the tactic employed by natural systems to expand the architectural space, has been rarely explored. Herein, we present a coassembly approach to investigate the morphology manipulation of assemblies formed by N-terminally capped diphenylalanine by mixing with various bipyridine derivatives through intermolecular hydrogen bonding. The coassembly-induced structural diversity is fully studied by a set of biophysical techniques and computational simulations. Moreover, multiple-responsive two-component supramolecular gels are constructed through the incorporation of functional bipyridine molecules into the coassemblies. This study not only depicts the coassembly strategy to manipulate the hierarchical nanoarchitecture and morphology transition of diphenylalanine-based assemblies by supramolecular interactions but also promotes the rational design and development of smart hydrogel-based biomaterials responsive to various external stimuli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.