Abstract

Nickel compounds are known to be common environmental and occupational carcinogens which also promote the migration of lung cancer cells. However, the molecular mechanism yet remains to be clarified. Hydrogen sulfide (H2S) is involved in cancer biological processes. However, the exact effect and functionality of H2S on nickel, towards the promotion of the migration ability of lung cancer cells, remains to be unknown. In this study, we have found that the nickel chloride (NiCl2) treatment significantly downregulates the protein levels of endogenous H2S enzyme cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-Mercaptopyruvate sulfurtransferase (3-MST). A correlation between NiCl2-induced epithelial-mesenchymal transition (EMT) and the migration ability of lung cancer A549cells has been observed. Exogenous H2S donor, sodium hydrogen sulfide (NaHS) (100μmol/L), can reverse NiCl2-induced EMT as well as the migration ability of A549cells. NiCl2 treatment is able to upregulate the protein level of transforming growth factor-β1 (TGF-β1), p-Smad2, p-Smad3, p-JNK, p-ERK and p-P38 in a time-dependent fashion, indicating that both TGF-β1/Smad2/Smad3 and mitogen-activated protein kinase (MAPK) signaling cascades (a non-Smad pathway) may play essential roles in NiCl2-dependent EMT as well as cell migration of human lung cancer cells. Furthermore, exogenous NaHS alleviates the NiCl2-induced EMT and the migration ability of A549cells only by regulating TGF-β1/Smad2/Smad3, rather than the MAPK, signaling pathway. These results indicate that the exogenous administration of NaHS might be a potential therapeutic strategy against nickel-induced lung cancer progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.