Abstract
Lanthanide-doped upconversion nanoparticles (Ln-UCNPs) have been considered promising materials for various fields, such as biomedical and industrial applications. However, data and reports regarding its toxicity and environmental risks are scarce. Under these circumstances, data must be obtained to fully understand potential toxicity and adverse outcome pathways. In the present study, the toxicity of uncoated Ln-UCNP cores (NaYF4:Yb, Er) was systematically assessed in zebrafish embryos during early developmental stages. Ln-UCNPs were found to have multiple toxic effects, such as effects on survival rates, delayed hatching times, shorter body lengths, altered heart rates and blood circulation (significantly reduced), and neurobehavioral impairments in response to photoperiod stimulation. Bioimaging showed that Ln-UCNPs were distributed on the chorion, eyes, and skin at 72 hpf. However, it accumulates in the pharynx, esophagus, and intestine after oral administration. Ln-UCNPs disrupt the diversity and abundance of host-associated microorganisms (gut microbiota) leading to an increase in the prevalence of harmful bacteria in zebrafish. Transcriptomic and Ingenuity Pathway Analysis (IPA) predicted Interleukin-8 (IL-8) signaling, neuroinflammation, cardiac hypertrophy signaling pathways, immune and inflammation-related response interferon-gamma (ifnγ), and miR-155 as key mediators in regulatory effects. Based on this, a causal network was built showing the strong links between the induced gene expression of differentially expressed genes (DEGs), such as nitric oxide synthase 2 (nos2) and tumor necrosis factor (tnf) upon Ln-UCNPs treatment, and with the downstream adverse outcomes, in particular, the promotion of apoptosis, liver damage, and inflammatory response. Finally, RT-qPCR analysis confirmed the up-regulated expression of nos2 and tnf in the exposed larvae, consistent with the observation of an increased number of fluorescence-labelled neutrophils and macrophages in lyz: DsRed transgenic zebrafish until 120 hpf exposure, which together demonstrated the proinflammatory effects of Ln-UCNPs on organisms. In conclusion, we illustrated the developmental toxicity, disruption of gut-microbiome, and proinflammatory effects of Ln-UCNP cores on zebrafish, and the causal network from IPA analysis may help further elucidate the adverse outcome pathway of Ln-UCNPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.