Abstract
We consider a scalar conservation law with a discontinuous flux function. The fluxes are non-convex, have multiple points of extrema and can have arbitrary intersections. We propose an entropy formulation based on interface connections and associated jump conditions at the interface. We show that the entropy solutions with respect to each choice of interface connection exist and form a contractive semi-group in $L^1$. Existence is shown by proving convergence of a Godunov type scheme by a suitable modification of the singular mapping approach. This extends the results of [3] to the general case of non-convex flux geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.