Abstract

We study a scalar conservation law whose flux has a single spatial discontinuity. There are many notions of (entropy) solution, the relevant concept being determined by the application. We focus on the so-called vanishing viscosity solution. We utilize a Kružkov-type entropy inequality which generalizes the one in [K. H. Karlsen, N. H. Risebro and J. D. Towers, [Formula: see text]-stability for entropy solutions of nonlinear degenerate parabolic convection–diffusion equations with discontinuous coefficients, Skr. K. Nor. Vidensk. Selsk. 3 (2003) 1–49], singles out the vanishing viscosity solution whether or not the crossing condition is satisfied, and has a discrete version satisfied by the Godunov variant of the finite difference scheme of [S. Diehl, On scalar conservation laws with point source and discontinuous flux function, SIAM J. Math. Anal. 26(6) (1995) 1425–1451]. We show that the solutions produced by that scheme converge to the unique vanishing viscosity solution. The scheme does not require a Riemann solver for the discontinuous flux problem. This makes its implementation simple even when the flux is multimodal, and there are multiple flux crossings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call