Abstract
We study a scalar conservation law whose flux has a single spatial discontinuity. There are many notions of (entropy) solution, the relevant concept being determined by the application. We focus on the so-called vanishing viscosity solution. We utilize a Kružkov-type entropy inequality which generalizes the one in [K. H. Karlsen, N. H. Risebro and J. D. Towers, [Formula: see text]-stability for entropy solutions of nonlinear degenerate parabolic convection–diffusion equations with discontinuous coefficients, Skr. K. Nor. Vidensk. Selsk. 3 (2003) 1–49], singles out the vanishing viscosity solution whether or not the crossing condition is satisfied, and has a discrete version satisfied by the Godunov variant of the finite difference scheme of [S. Diehl, On scalar conservation laws with point source and discontinuous flux function, SIAM J. Math. Anal. 26(6) (1995) 1425–1451]. We show that the solutions produced by that scheme converge to the unique vanishing viscosity solution. The scheme does not require a Riemann solver for the discontinuous flux problem. This makes its implementation simple even when the flux is multimodal, and there are multiple flux crossings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.