Abstract

The Busemann-equation is a classical equation coming from fluid dynamics. The well-posed problem and regularity of solution of Busemann-equation with nonlinear term are interesting and important. The Busemann-equation is elliptic in y > 0 and is degenerate at the line y = 0 in R 2 . With a special nonlinear absorb term, we study a nonlinear degenerate elliptic equation with mixed boundary conditions in a piecewise smooth domain. By means of elliptic regularization technique, a delicate prior estimate and compact argument, we show that the solution of mixed boundary value problem of Busemann-equation is smooth in the interior and Lipschitz continuous up to the degenerate boundary on some conditions. The result is better than the result of classical boundary degenerate elliptic equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.