Abstract
The Keldysh equation is a more general form of the classic Tricomi equation from fluid dynamics. Its well-posedness and the regularity of its solution are interesting and important. The Keldysh equation is elliptic in y > 0 and is degenerate at the line y = 0 in R 2 . Adding a special nonlinear absorption term, we study a nonlinear degenerate elliptic equation with mixed boundary conditions in a piecewise smooth domain—similar to the potential fluid shock reflection problem. By means of an elliptic regularization technique, a delicate a priori estimate and compact argument, we show that the solution of a mixed boundary value problem of the Keldysh equation is smooth in the interior and Lipschitz continuous up to the degenerate boundary under some conditions. We believe that this kind of regularity result for the solution will be rather useful.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.