Abstract

The problem of shock reflection by a wedge in the flow dominated by the unsteady potential flow equation is an important problem. In weak regular reflection, the flow behind the reflected shock is immediately supersonic and becomes subsonic further downstream. The reflected shock is transonic. Its position is a free boundary for the unsteady potential equation, which is degenerate at the sonic line in self-similar coordinates. Applying the special partial hodograph transformation used in [Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle I, 2-D case, Comm. Pure Appl. Math. LVII (2004) 1-51; Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle II, 3-D case, IMS, preprint, 2003], we derive a nonlinear degenerate elliptic equation with nonlinear boundary conditions in a piecewise smooth domain. When the angle between incident shock and wedge is small, we can see the weak regular reflection as the disturbance of normal reflection as in [Chen Shuxing, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21(78) (1996) 1103–1118]. By linearizing the resulted nonlinear equation and boundary conditions with the above viewpoint in [Chen Shuxing, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21(78) (1996) 1103–1118], we obtain a linear degenerate elliptic equation with mixed boundary conditions in a curved quadrilateral domain. By means of elliptic regularization techniques, a delicate a priori estimate and compact arguments, we show that the solution of the linearized problem is smooth in the interior and Lipschitz continuous up to the degenerate boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.