Abstract
We consider the following singularly perturbed nonlocal elliptic problem $$\begin{aligned} -\left( \varepsilon ^{2}a+\varepsilon b\displaystyle \int _{\mathbb {R}^{3}}|\nabla u|^{2}dx\right) \Delta u+V(x)u=\displaystyle \varepsilon ^{\alpha -3}(W_{\alpha }(x)*|u|^{p})|u|^{p-2}u, \quad x\in \mathbb {R}^{3}, \end{aligned}$$ where \(\varepsilon >0\) is a parameter, \(a>0,b\ge 0\) are constants, \(\alpha \in (0,3)\), \(p\in [2, 6-\alpha )\), \(W_{\alpha }(x)\) is a convolution kernel and V(x) is an external potential satisfying some conditions. By using variational methods, we establish the existence and concentration of positive ground state solutions for the above equation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have