Abstract
In this paper, by using variational methods, we study the existence and concentration of ground state solutions for the following fractional Schrödinger equation ( − Δ ) α u + V ( x ) u = A ( ϵ x ) f ( u ) , x ∈ R N , where α ∈ ( 0 , 1 ), ϵ is a positive parameter, N > 2 α, ( − Δ ) α stands for the fractional Laplacian, f is a continuous function with subcritical growth, V ∈ C ( R N , R ) is a Z N -periodic function and A ∈ C ( R N , R ) satisfies some appropriate assumptions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.