Abstract

Coffee is one of the most consumed beverages in the world, due to its unique aroma and stimulant properties. Although its health effects are controversial, moderate intake seems to be beneficial. The present work deals with the characterization and quantification of polyphenols and methylxanthines in four Arabica green coffee beans from different geographical origins. The antioxidant activity was also evaluated. Forty-three polyphenols (cinnamic acid, cinnamoyl-amide, 5 cinammoyl-glycosides, and 36 cinnamate esters) were identified using LC-MSn. Among these, cinnamate esters of six different chemical groups (including two dimethoxycinnamoylquinic acid isomers, three caffeoyl-feruloylquinic acid isomers, caffeoyl-sinapoylquinic acid, p-coumaroyl-feruloylquinic acid, two caffeoylshikimic acid isomers, and trimethoxycinnamoylshikimic acid) in addition to five isomers of cinnamoyl-glycosides called caffeoyl-2,7-anhydro-3-deoxy-2-octulopyranosic acid (CDOA) are described for the first time in Arabica green coffee beans. Moreover, 38 polyphenols (6-7% w/w) and 2 methylxanthines (1.3% w/w) were quantified by HPLC-DAD. Caffeoylquinic was the most abundant group of compounds (up to 85.5%) followed by dicaffeoylquinic and feruloylquinic acids (up to 8 and 7%, respectively) and the newly identified cinnamoyl-glycosides (CDOA) (up to 2.5%). Caffeine was the main methylxanthine (99.8%), with minimal amounts of theobromine (0.2%). African coffees (from Kenya and Ethiopia) showed higher polyphenolic content than American beans (from Brazil and Colombia), whereas methylxanthine contents varied randomly. Both phenols and methylxanthines contributed to the antioxidant capacity associated with green coffee, with a higher contribution of polyphenols. We conclude that green coffee represents an important source of polyphenols and methylxanthines, with high antioxidant capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.