Abstract

Compared with conventional fossil fuel sources, geothermal energy has several advantages. The produced geothermal energy is safe for the environment and suitable for meeting heating power needs. Because the hot water used in the geothermal process can be recycled and used to generate more steam, this energy is sustainable. Furthermore, the climate change does not affect geothermal power installations. This study suggests a combined power generation cycle replicating using the EES software that combines a single flash cycle with a trans-critical carbon dioxide cycle. The findings demonstrate that, in comparison to the BASIC single flash cycle, the design characteristics of the proposed system are greatly improved. The proposed strategy is then improved using the Nelder–Mead simplex method and Genetic Algorithm. The target parameter is exergy efficiency, and the three assumed variable parameters are separator pressure, steam turbine outlet pressure, and carbon dioxide turbine inlet pressure. The system’s exergy efficiency was 32.46% in the default operating mode, rising to 39.21% with the Genetic Algorithm and 36.16% with the Nelder–Mead simplex method. In the final step, the exergy destruction of different system components is calculated and analyzed.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.