Abstract

AbstractWe have observed remarkable changes in the magnetic properties of excitons as they acquire kinetic energy. In particular, the Zeeman splittings and diamagnetic shifts of excitonic transitions when magnetic fields are applied along the growth direction of (001) wide quantum wells of CdTe, ZnSe, ZnTe and GaAs are found to to have a strong dependence on the translational wavevector Kz. The behaviour of the Zee‐man splittings corresponds to enhancement of the magnetic moments of the excitons. This enhancement is particularly marked when their translational kinetic energy becomes comparable with the exciton Rydberg and can be described by what appears to be a universal function of Kz. A model for the behaviour is outlined which involves motionally‐induced mixing between the 1S hydrogenic exciton ground state and excited nP states. The observations imply that there are significant changes in the structure of the exciton as its translational kinetic energy increases. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.