Abstract

The recent year has witnessed a flurry of activities in investigating the promising electronic, optical, and transport properties of lead‐free double perovskite halides. In the present work, the structural, electronic, optical, and transport properties of Cs2(Li/Na)GaI6 are carefully examined. The predicted negative formation energy, absence of imaginary frequency in the phonon spectra, and ab‐initio molecular dynamics calculations show that they are thermodynamically stable. Additionally, electronic studies employing generalized gradient approximation (GGA)–Perdew–Burke–Ernzerhof (PBE) + modified Becke‐Johnson + spin‐orbit coupling reveal that Cs2(Li/Na)GaI6 exhibits a direct bandgap, with values of 1.24 eV for Cs2LiGaI6 and 1.39 eV for Cs2NaGaI6. The exceptional optical properties, including a high absorption coefficient (105 cm−1) and excellent optical conductivity with low reflectivity across the entire UV–visible range, indicate that Cs2(Li/Na)GaI6 are promising materials for solar cell applications. Moreover, the ultralow thermal conductivity, high Seebeck coefficient, and substantial electrical conductivity of Cs2(Li/Na)GaI6 result in a high figure of merit over the temperature range of 200–600 K. Thus, Cs2(Li/Na)GaI6 shows strong potential as both photovoltaic and thermoelectric materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.