Abstract
Generating a pure spin current using electrons, which have degrees of freedom beyond spin, such as electric charge and valley index, presents challenges. In response, we propose a mechanism based on intervalley exciton dynamics in strained transition metal dichalcogenides (TMDs) to achieve the in an electrically insulating regime, without the need for an external electric field. The interplay between strain gradients and strain-induced pseudomagnetic fields results in a net Lorentz force on long-lived intervalley excitons in WSe2, carrying nonzero spin angular momentum. This process generates an exciton-mediated pure spin Hall current, resulting in opposite-sign spin accumulations and local magnetization on the two sides of the single-layer arc-shaped TMD. We demonstrate that the magnetic field induced by spin accumulation, at approximately ∼mT, can be detected using techniques such as superconducting quantum interference magnetometry or spatially resolved magneto-optical Faraday and Kerr rotations. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.