Abstract
The remarkably strong Coulomb interaction in atomically thin transition metal dichalcogenides (TMDs) results in an extraordinarily rich many-particle physics including the formation of tightly bound excitons. Besides optically accessible bright excitonic states, these materials also exhibit a variety of dark excitons. Since they can even lie below the bright states, they have a strong influence on the exciton dynamics, lifetimes, and photoluminescence. While very recently, the presence of dark excitonic states has been experimentally demonstrated, the origin of these states, their formation, and dynamics have not been revealed yet. Here, we present a microscopic study shedding light on time- and energy-resolved formation and thermalization of bright and dark intra- and intervalley excitons as well as their impact on the photoluminescence in different TMD materials. We demonstrate that intervalley dark excitons, so far widely overlooked in current literature, play a crucial role in tungsten-based TMDs giving rise to an enhanced photoluminescence and reduced exciton lifetimes at elevated temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.