Abstract

Variational calculations of excited vibrational states for the OCS molecule, using generalized internal coordinates properly optimized, are presented. The calculations are made for two empirical and one ab initio potential energy surfaces previously reported. It is shown that the computed vibrational frequencies differ considerably from the experimental values for the three potential surfaces employed. Consequently a new and much more accurate potential surface is determined for OCS by nonlinear least-squares fitting to the observed vibrational terms. The surface is expressed as a Morse-cosine expansion in valence coordinates and its quality is checked by computing the vibrational frequencies of three isotopic species of the molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.