Abstract

The combined density functional theory (DFT) and time-dependent density functional theory (TDDFT) method was used to study the electronic spectral properties of different deprotonated forms of esculetin. By comparing the experimental absorption and fluorescence bands with the calculated electronic spectra, it is evidently demonstrated that the minor absorption and fluorescence bands observed at slightly longer wavelengths than the principal bands in experiments are predominantly from the de-H3 form of the esculetin monomer. Furthermore, we clarified the relationship between electronic spectral shifts and electronic excited-state intramolecular hydrogen bonding changes: the strengthening of intramolecular hydrogen bond can induce an electronic spectral blueshift while the intramolecular hydrogen bond weakening can result in an electronic spectral redshift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.