Abstract
In this work, the time-dependent density functional theory (TDDFT) method was carried out to study the hydrogen-bonding dynamics in both singlet and triplet excited states of trans-acetanilide (AA)–(H2O) complexes formed by trans-acetanilide in a water (H2O) solvent. The ground-state geometric structure optimisations were calculated by the density functional theory method, but the electronic excitation energies and corresponding oscillation strengths of the low-lying electronically excited states for isolated AA, H2O monomers and hydrogen-bonded AA(CO)–(H2O)1, AA(NH)–(H2O)1 dimers as well as the dihydrogen-bonded AA–(H2O)2 trimer were calculated by the TDDFT method. In our system, the intermolecular hydrogen bonds C = O…H–O and N–H…O–H can also be formed. From the TDDFT results, we depicted the changes of different hydrogen-bonded complexes in various electronic excited states. According to Zhao's rule on the relationship between the electronic spectral shift and excited-state hydrogen-bonding dynamics, hydrogen bond strengthening can bring the relative electronic spectra redshift, whereas hydrogen bond weakening can make the corresponding electronic spectra shift to blue. In addition, we also discussed the frontier molecular orbitals and the electron density transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.