Abstract
Quantum chemical calculations of energies, geometrical structure, intramolecular hydrogen bonding (HB) and vibrational frequencies of 1,1,1-trifluoro-4-mercapto-but-3-ene-2-thione were carried out by the ab initio Hartree–Fock, Moller–Plesset second-order perturbation (MP2) and density functional theory (DFT) methods with 6-311++G** basis set in gas phase and water solution. The nature of the intramolecular hydrogen bond in the most stable chelated conformers has been studied by using the atoms in molecules theory of Bader, which is based on topological properties of the electron density. Natural bond orbital (NBO) analysis was also performed for better understanding of the nature of intramolecular interactions. The influence of the solvent on the stability order of conformers and the strength of intramolecular HB was considered using Tomasi's polarized continuum model. The HOMA, NICS, PDI, ATI, FLU and FLU π indices as well-established aromaticity indicators are examined. The excited-state properties of intramolecular HB in hydrogen-bonded systems have been investigated theoretically using the time-dependent DFT method. The calculated highest occupied molecular orbital (MO) and lowest unoccupied MO with frontier orbital gap are presented. Further verification of the obtained transition state structures was implemented via intrinsic reaction coordinate analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.