Abstract
We have modeled steady-state spectra and energy-transfer dynamics in the peripheral plant light-harvesting complex LHCII using new structural data. The dynamics of the chlorophyll (Chl) b-->Chl a transfer and decay of selectively excited "bottleneck" Chl a and b states have been studied by femtosecond pump-probe spectroscopy. We propose an exciton model of the LHCII trimer (with specific site energies) which allows a simultaneous quantitative fit of the absorption, linear-dichroism, steady-state fluorescence spectra, and transient absorption kinetics upon excitation at different wavelengths. In the modeling we use the experimental exciton-phonon spectral density and modified Redfield theory. We have found that fast b-->a transfer is determined by a good connection of the Chls b to strongly coupled Chl a clusters, i.e., a610-a611-a612 trimer and a602-a603 and a613-a614 dimers. Long-lived components of the energy-transfer kinetics are determined by a quick population of red-shifted Chl b605 and blue-shifted Chl a604 followed by a very slow (3 ps for b605 and 12 ps for a604) flow of energy from these monomeric bottleneck sites to the Chl a clusters. The dynamics within the Chl a region is determined by fast (with time constants down to sub-100 fs) exciton relaxation within the a610-a611-a612 trimer, slower 200-300 fs relaxation within the a602-a603 and a613-a614 dimers, even slower 300-800 fs migration between these clusters, and very slow transfer from a604 to the quasi-equilibrated a sites. The final equilibrium is characterized by predominant population of the a610-a611-a612 cluster (mostly the a610 site). The location of this cluster on the outer side of the LHCII trimer probably provides a good connection with the other subunits of PSII.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.