Abstract

The energy transfer and charge separation kinetics of a photosystem I (PS I) core particle of an antenna size of 100 chlorophyll/P700 has been studied by combined fluorescence and transient absorption kinetics with picosecond resolution. This is the first combined picosecond study of transient absorption and fluorescence carried out on a PS I particle and the results are consistent with each other. The data were analyzed by both global lifetime and global target analysis procedures. In fluorescence major lifetime components were found to be 12 and 36 ps. The shorter-lived one shows a negative amplitude at long wavelengths and is attributed to an energy transfer process between pigments in the main antenna Chl pool and a small long-wavelength Chl pool emitting around 720 nm whereas the longer-lived component is assigned to the overall charge separation lifetime. The lifetimes resolved in transient absorption are 7-8 ps, 33 ps, and [unk]1 ns. The shortest-lived one is assigned to energy transfer between the same pigment pools as observed also in fluorescence kinetics, the middle component of 33 ps to the overall charge separation, and the long-lived component to the lifetime of the oxidized primary donor P700(+). The transient absorption data indicate an even faster, but kinetically unresolved energy transfer component in the main Chl pool with a lifetime <3 ps. Several kinetic models were tested on both the fluorescence and the picosecond absorption data by global target analysis procedures. A model where the long-wave pigments are spatially and kinetically connected with the reaction center P700 is favored over a model where P700 is connected more closely with the main Chl pool. Our data show that the charge separation kinetics in these PS I particles is essentially trap limited. The relevance of our data with respect to other time-resolved studies on PS I core particles is discussed, in particular with respect to the nature and function of the long-wave pigments. From the transient absorption data we do not see any evidence for the occurrence of a reduced Chl primary electron acceptor, but we also can not exclude that possibility, provided that reoxidation of that acceptor should occur within a time <40 ps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.