Abstract
This study introduces an implementation of multiple Gaussian filters within the Hamiltonian hybrid particle-field (HhPF) theory, aimed at capturing phase coexistence phenomena in mesoscopic molecular simulations. By employing a linear combination of two Gaussians, we demonstrate that HhPF can generate potentials with attractive and steric components analogous to Lennard-Jones (LJ) potentials, which are crucial for modeling phase coexistence. We compare the performance of this method with the multi-Gaussian core model (MGCM) in simulating liquid-gas coexistence for a single-component system across various densities and temperatures. Our results show that HhPF effectively captures detailed information on phase coexistence and interfacial phenomena, including microconfiguration transitions and increased interfacial fluctuations at higher temperatures. Notably, the phase boundaries obtained from HhPF simulations align more closely with those of LJ systems compared to the MGCM results. This work advances the hybrid particle-field methodology to address phase coexistence without requiring modifications to the equation of state or introducing additional interaction energy functional terms, offering a promising approach for mesoscale molecular simulations of complex systems.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.