Abstract

Reliable information on the spreading of oil plume on water caused by massive oil spills is essential for making proper clean-up measures. Satellite remote sensing technology has advantages over other methods in terms of larger coverage and without ex- pensive operating costs to detect oil spills. In this study, an oil plume delineation method based on the Near-Infrared (NIR) satellite data is used to examine oil spill plume area and size for the BP Deepwater Horizon Oil Spill in the offshore water of Gulf of Mexico and for the recent Norilsk oil spill in a Northern inland water region. To get accurate results noise signals such as land from the data are masked out using SNAP based DEM data and Normalized Difference Water Index method, whereas cloud signals are removed using MODIS cloud masking. Cox-Munk model is used to compute the sun glint radiance. Results of DP oil spill case depicts a 4838.84 km2 thicker oil plume along with the 20635.53 km2 thinner portion of the oil slicks using MODIS NIR data at a 500-meter resolution. It is subsequently applied to the recent Norilsk Oil Spill using higher resolution Sentinel-2 NIR data to test the method for detecting spill plume in an inland river water system. Reasonable high-resolution results at 10 meter have been obtained for the smaller scale oil spill onto river water compared to larger offshore area, considering that the river site has complex conditions including shallow water and river reddish soil close to oil color. The developed method is suitable for detecting thick oil plume in ocean or deep inland water bodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call