Abstract

We study the quantum-mechanical problem of scattering caused by a localized obstacle that breaks spatial and temporal reversibility. Accordingly, we follow Maxwell's prescription to achieve a violation of the second law of thermodynamics by means of a momentum-dependent interaction in the Hamiltonian, resulting in what is known as Maxwell's demon. We obtain the energy-dependent Green's function analytically, as well as its meromorphic structure. The poles lead directly to the solution of the evolution problem, in the spirit of M. Moshinsky's work published in the 1950s. Symmetric initial conditions are evolved in this way, showing important differences between classical and wave-like irreversibility in terms of collapses and revivals of wave packets. Our setting can be generalized to other wave operators, e.g. electromagnetic cavities in a classical regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call