Abstract
We consider the asymptotic behaviour of the Chern-Simons Green's function of the $\nu=1/\tilde{\phi}$ system for an infinite area in position-time representation. We calculate explicitly the asymptotic form of the Green's function of the interaction free Chern-Simons system for small times. The calculated Green's function vanishes exponentially with the logarithm of the area. Furthermore, we discuss the form of the divergence for all $\tau$ and also for the Coulomb interacting Chern-Simons system. We compare the asymptotics of the exact Chern-Simons Green's function with the asymptotics of the Green's function in the Hartree-Fock as well as the random-phase approximation (RPA). The asymptotics of Hartree-Fock the Green's function corresponds well with the exact Green's function. In the case of the RPA Green's function we do not get the correct asymptotics. At last, we calculate the self consistent Hartree-Fock Green's function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.