Abstract

The solution of time dependent differential equations with neural networks has attracted a lot of attention recently. The central idea is to learn the laws that govern the evolution of the solution from data, which might be polluted with random noise. However, in contrast to other machine learning applications, usually a lot is known about the system at hand. For example, for many dynamical systems physical quantities such as energy or (angular) momentum are exactly conserved. Hence, the neural network has to learn these conservation laws from data and they will only be satisfied approximately due to finite training time and random noise. In this paper we present an alternative approach which uses Noether's Theorem to inherently incorporate conservation laws into the architecture of the neural network. We demonstrate that this leads to better predictions for three model systems: the motion of a non-relativistic particle in a three-dimensional Newtonian gravitational potential, the motion of a massive relativistic particle in the Schwarzschild metric and a system of two interacting particles in four dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.