Abstract
The interaction of magnetohydrodynamic (MHD) waves in a non-uniform, time-dependent background plasma flow is investigated using Lasrangian field theory methods. The analysis uses Lagrangian maps, in which the exact position of the fluid element x* is expressed as a vector sum of the position vector x of the background plasma fluid element phis a Lagrangian displacement ξ(x,t) due to the waves. An exact theory for the wave and background stress energy tensors is developed based on the exact Lagrangian and the exact Lagrangian map. Noether's theorems are used in conjunction with tlie exact action out Lagrangian maps to determine the general form of conservation laws for the total system of waves and background plasma, corresponding to divergence symmetries of the action. The energy and momentum conservation laws of the system are derived from Noether's first theorem corresponding to the time and space translation symmetries of the action, respectively. As examples of the use of Noether's first theorem, we derive the conservation laws associated with tlie 10-parameter Galilean group admitted by the MHD equations. This includes the space and time translation symmetries, the space rotations, and the Galilean boosts. A class of solutions of the Lie determining equations for the infinife-dimensional MHD fluid relabeling symmetries are used to discuss the corresponding conservation laws. Ertel's theorem for the conservation of potential vorticity for the system of waves and background gas in ideal gas dynamics is derived from an infinite-dimensional fluid relabeling symmetry of the action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.