Abstract

Helium clusters doped with diatomic molecules, He(N)-BC, have been recently studied by means of a quantum-chemistry-like approach. The model treats He atoms as "electrons" and dopants as "nuclei" in standard electronic structure calculations. Due to the large mass difference between He atoms and electrons, and to the replacement of Coulomb interactions by intermolecular potentials, it is worth assessing up to what extent are the approximations involved in this model, i.e., decoupling of the BC rotation from the He-atom orbital angular momenta and Born-Oppenheimer separation of the BC stretch versus the He motions, accurate enough. These issues have been previously tackled elsewhere for the (4)He(2)-Br(2)(X) system, which contains a heavy dopant [Roncero et al., Int. J. Quantum Chem. 107, 2756 (2007)]. Here, we consider a similar cluster but with a much lighter dopant such as N(2)(X). Although the model does not provide the correct energy levels for the cluster, positions and intensities of the main detectable lines of the vibrotational Raman spectrum at low temperature are accurately reproduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.