Abstract

Stress urinary incontinence (SUI) is the involuntary release of urine during sudden increases in abdominal pressures. SUI is common in women after vaginal delivery or pelvic trauma and may alter the biomechanical properties of the urethra. Thus we hypothesize that injury due to vaginal distension (VD) decreases urethral basal tone and passive stiffness. This study aimed to assess the biomechanical properties of the urethra after VD in the baseline state, where basal muscle tone and extracellular matrix (ECM) are present, and in the passive state, where inactive muscle and ECM are present. Female rat urethras were isolated in a rat model of acute SUI induced by simulated birth trauma. Our established ex vivo system was utilized, wherein we applied intraluminal static pressures ranging from 0 to 20 mmHg. Outer diameter was measured via a laser micrometer. Measurements were recorded via computer. Urethral thickness was assessed histologically. Stress-strain responses of the urethra were altered by VD. Quantification of biomechanical parameters indicated that VD decreased baseline stiffness. The passive peak incremental elastic modulus of the distal segment in VD urethras was less than for controls (1.84 +/- 0.67 vs. 1.19 +/- 0.70 x 10(6) dyne/cm(2), respectively; P = 0.016). An increase was noted in passive low-pressure compliance values in proximal VD urethras compared with controls (9.44 +/- 2.43 vs. 4.62 +/- 0.60 mmHg(-1), respectively; P = 0.04). Biomechanical analyses suggest that VD alters urethral basal tone, proximal urethral compliance, and distal stiffness. Lack of basal smooth muscle tone, in combination with these changes in the proximal and distal urethra, may contribute to SUI induced by VD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.