Abstract

This study presents numerical work to investigate the Falkner–Skan flow of a bio-convective Casson fluid over a wedge using an Evolutionary Padé Approximation (EPA) scheme. The governing partial differential equations and boundary conditions of a Falkner–Skan flow model are transformed to a system of ordinary differential equations involving ten dimensionless parameters by using similarity transformations. In the proposed EPA framework, an equivalent constrained optimization problem is formed. The solution of the resulting optimization problem is analogous to the solution of the dimensionless system of ordinary differential equations. The solutions produced in this work, with respect to various combinations of the physical parameters, are found to be in good agreement with those reported in the previously published literature. The effects of a non-dimensional physical-parameter wedge, Casson fluid, fluid phase effective heat capacity, Brownian motion, thermophoresis, radiation, and magnetic field on velocity profile, temperature profile, fluid concentration profile, and the density of motile microorganisms are discussed and presented graphically. It is observed that the fluid velocity rises with a rise in the Casson fluid viscosity force parameter, and an increase in the Prandtl number causes a decrease in the heat transfer rate. Another significant observation is that the temperature and fluid concentration fields are greatly increased by an increase in the thermophoresis parameter. An increase in the Péclet number suppresses the microorganism density. Moreover, the increased values of the Prandtl number increase the local Nusslet number, whereas the skin friction is increased when an increase in the Prandtl number occurs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.