Abstract
In the current study, a comparative analysis of two-dimensional heat transfer by the free convective flow of non-Newtonian Casson and Carreau fluid in electro-conductive polymer on the outside surface of a horizontal circular cylinder under slip and radial magnetic field effects is regarded. The Casson and Carreau fluid model formulation were first developed for the problem of the boundary layer of the horizontal circular cylinder and by using non-similarity transformations, the combined governing partial differential equations are translated into ordinary differential equations. The differential equations obtained are resolved by the Keller Box Method (KBM). The impact of the key parameters, the rate of heat transfer and skin friction is evaluated through graphs and tables. The result reveals that an increase in magnetic number decreases the velocity field of both Casson and Carreau fluid also Casson fluid is higher values when compared to Carreau fluid in variation of magnetic number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.