Abstract
The frequency of occurrence of particular repetitive sequence families has been estimated in the DNA of the three sea urchin species Strongylocentrotus purpuratus, Strongylocentrotus franciscanus and Lytechinus pictus using individual cloned S. purpuratus repetitive sequence elements. Cloned repetitive sequence elements as described by Scheller et al. (1977a) were prepared by reassociation of S. purpuratus DNA fragments to repetitive Cot, digestion with single-strand-specific nuclease S1 and ligation of synthetic restriction sites to their ends. The sequences were cloned by insertion at the Eco RI site of plasmid RSF2124, labeled, strand-separated and reassociated with 800–900 nucleotide long unlabeled DNA. Both kinetic (genomic DNA excess) and saturation (cloned DNA excess) estimates of frequencies were made. For nine cloned fragments, the ratio of the repetition frequency in S. purpuratus DNA to that in S. franciscanus DNA ranges from about 20 to about 1. In the four cases examined, only a few copies were detected in the DNA of L. pictus. Estimates have also been made of frequency changes in many repetitive families by measuring the reassociation of labeled repetitive DNA fractions of each species with total DNA from other species. In each reciprocal comparison, the labeled repetitive sequences reassociate more slowly with DNA of other species than with DNA of the species from which they were prepared. Thus it appears that the dominant repetitive sequence families in the DNA of each species are present at lower frequencies in the DNA of closely related species. Measurements of thermal stability have been made of S. purpuratus cloned repetitive sequences reassociated with S. franciscanus DNA or S. purpuratus DNA. Most families have changed both in frequency and sequence, although some have changed little in sequence but show great changes in frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.