Abstract

N-glycosylation is one of the most abundant and conserved protein modifications in eukaryotes. The attachment of N-glycans to proteins can modulate their properties and influences numerous important biological processes, such as protein folding and cellular attachment. Recently, it has been shown that protein N-glycosylation plays a vital role in insect development and survival, which makes the glycans an interesting target for pest control. Despite the importance of protein N-glycosylation in insects, knowledge about insect N-glycoproteomes is scarce. To fill this gap, the N-glycosites were identified in proteins from three major pest insects, spanning different insect orders and diverging in post-embryonic development, feeding mechanism and evolutionary ancestry: Drosophila melanogaster (Diptera), Tribolium castaneum (Coleoptera) and Acyrthosiphon pisum (Hemiptera). The N-glyco-FASP method for isolation of N-glycopeptides was optimized to study the insect N-glycosites and allowed the identification of 889 N-glycosylation sites in T. castaneum, 941 in D. melanogaster and 1338 in A. pisum. Although a large set of the corresponding glycoproteins is shared among the three insects, species- and order-specific glycoproteins were also identified. The functionality of the insect glycoproteins together with the conservation of the N-glycosites throughout evolution is discussed. This information can help in the elaboration of novel pest insect control strategies based on interference in insect glycosylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.