Abstract

Family-B G protein-coupled receptors (GPCR-Bs) play vital roles in many biological processes, including growth, development and reproduction. However, the evolution and function of GPCR-Bs have been poorly understood in insects.We have identified 87 GPCR-Bs from six model insect species, 20 from Tribolium castaneum, 9 from Apis mellifera, 11 from Bombyx mori, 9 from Acyrthosiphon pisum, 14 from Anopheles gambiae and 24 from Drosophila melanogaster. 22 of them were reported in this study for the first time. Phylogenetic analysis revealed that there are three kinds of evolutionary patterns that occurred among GPCR-Bs during insect evolution: one-to-one orthologous relationships, species-specific expansion and episodic duplication or loss in certain insect lineages. A striking finding was the discovery of a parathyroid hormone receptor like gene (pthrl) in invertebrates, which was independently duplicated in vertebrates and invertebrates, whereas this gene was lost at least twice during insect evolution. These results indicate that PTHRL is possibly divergent in the functions between mammals and insects.The information of family-B GPCRs in nondrosophiline insects has been established, and will promote the further study on the function of these GPCRs and deorphanization of them. On the other hand, this study provides us with multiple function of GPCR-Bs in differential organisms, which will be also the potential attacking targets for new pesticides and drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call