Abstract

This paper discusses the formation of the TiOx-SiOx nano-composite phase during annealing of ultrathin titanium oxide films (~27 nm). The amorphous titanium oxide films are deposited on silicon substrates by sputtering. These films are important for high-k dielectrics and sensing applications. Annealing of these films at 750 °C in the O2 environment (for 15–60 min) resulted in the polycrystalline rutile phase. The films exhibit Raman peaks at 150 cm−1 (B1g), 435 cm−1 (Eg), and 615 cm−1 (A1g) confirming the rutile phase. The signature TO (1078 cm−1) and LO (1259 cm−1) infrared active vibrational modes of Si–O–Si bond confirms the presence of silicon-oxide. The X-ray photoelectron spectra of the TiOx films show multiple peaks corresponding to Ti metal (453.8 eV); Ti4+ state (458.3 eV (Ti 2p3/2) and 464 eV (Ti 2p1/2)); and Ti3+ state (456.4 eV (Ti 2p3/2) and 460.8 eV (Ti 2p1/2)). The O1s XPS spectra peaks at 530–533 eV can be attributed to Ti–O and Si–O bonds of the TiOx-SiOx nano-composite phase in the annealed films. The depth profiling XPS study shows that the top surface of the annealed film is mainly TiOx and the amount of SiOx increases with the depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.