Abstract

Hydro-oxygenated amorphous titanium oxide (a-TiO x :OH) films were prepared by plasma-enhanced chemical vapor deposition (PECVD) using precursors of titanium tetraisopropoxide (TTIP) and oxygen. The influences of chemical states and crystal quality on the photocatalytic activity were systematically investigated in the as-deposited and post-annealed films. The degree of the photocatalytic activity was deeply correlated with the porosity related to the hydroxyl (OH) groups in the as-deposited amorphous film. The crystallized anatase structures was observed from the 200 °C-deposited a-TiO x :OH film after a post-annealing treatment at 400 °C. The photocatalytic activity related to the film with anatase structure was markedly superior to that of an amorphous film with porous structures. The larger the crystal size of the anatase structure, the higher the photocatalytic activity obtained. At elevated annealed temperatures, the inferior anatase structure due to the crystalline transformation led to a low photocatalytic activity. It was concluded that the photocatalytic activity of an amorphous TiO x film prepared using PECVD was determined by the porosity originating from the functional OH groups in the film, whereas the crystalline quality of anatase phase in the annealed poly-TiO x film was crucial to the photocatalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call