Abstract

This paper examines the evidence for a plasticity based wear mechanism in the fretting wear of Ti-6Al-4V. Driven by near-surface plastic strain accumulation, the generation of wear debris evolves from coarse metallic debris towards loose fine oxide debris generating W-shape wear scar. The overall wear effect however, is less pronounced at the later stages of wear due to a reduced propensity for plastic deformation in the contact associated with wear induced contact pressure reduction. The evidence suggests that the high wear rate at the early stages of a fretting test are due to debris generation associated with gross plasticity whilst at the later stages, lower wear is associated with less plasticity accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.