Abstract
Population balance equation is converted to three moment equations to describe the dynamical behavior of particle size distribution in air in the rainfall. The scavenging coefficient is expressed as a polynomial function of the particle diameter, the raindrop diameter and the raindrop velocity. The evolutions of particle size distribution are simulated numerically and the effects of the raindrop size distribution on particle size distribution are studied. The results show that the raindrops with smaller geometric mean diameter and geometric standard deviation of size remove particles much more efficiently. The particles which fall in the ?greenfield gap? are the most difficult to be scavenged from the air.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.