Abstract

We define fully nonperturbative generalizations of the uniform density and comoving curvature perturbations, which are known, in the linear theory, to be conserved on sufficiently large scales for adiabatic perturbations. Our nonlinear generalizations are defined geometrically, independently of any coordinate system. We give the equations governing their evolution on all scales. Also, in order to make contact with previous works on first- and second-order perturbations, we introduce a coordinate system and show that previous results can be recovered, on large scales, in a remarkably simple way, after restricting our definitions to first and second orders in a perturbative expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.