Abstract

The single-particle spectrum of the Kondo lattice model is derived with the use of the continuous-time quantum Monte Carlo method, combined with the dynamical mean-field theory. Crossover behavior is traced quantitatively either to a heavy Fermi-liquid state or to a magnetically ordered state from the local-moment state at high temperatures. The momentum distribution in the low-temperature limit acquires a discontinuity at the location that involves the local-spin degrees of freedom. Even without the charge degrees of freedom for local electrons, the excitation spectra exhibit hybridized bands similar to those in the Anderson lattice. Temperature dependence in the zero-energy component of the self-energy is crucial in forming the Fermi-liquid state with the large Fermi surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call