Abstract

We consider a Mott transition of the Hubbard model in infinite dimensions. The dynamical meanfield theory is employed in combination with a continuous-time quantum Monte Carlo (CTQMC) method for an accurate description at low temperatures. From the double occupancy and the energy density, which are directly measured from the CTQMC method, we construct the phase diagram. We pay particular attention to the construction of the first-order phase transition line (PTL) in the coexistence region of metallic and insulating phases. The resulting PTL is found to exhibit reasonable agreement with earlier finite-temperature results. We also show by a systematic inclusion of low-temperature data that the PTL, which is achieved independently of the previous zero-temperature results, approaches monotonically the transition point from earlier zerotemperature studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.