Abstract

Magnetic and charge susceptibilities in the Kondo lattice are derived by the continuous-time quantum Monte Carlo (CT-QMC) method combined with the dynamical mean-field theory. For a weak exchange coupling J and near half filling of the conduction band, antiferromagnetic transition occurs as signalled by divergence of the staggered magnetic susceptibility with lowering temperature. With increasing J , the Kondo effect suppresses the divergence, and the critical value of J agrees well with Doniach's estimate which considers the RKKY interaction as competing with the Kondo effect. For low density of conduction electrons, a ferromagnetic ordering is observed where Doniach's estimate does not work. Around quarter filling, a charge-density-wave (CDW) transition is found. The CDW is interpreted from the strong-coupling limit in terms of effective repulsion between Kondo singlets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.