Abstract
ABSTRACTAs an effective means of coal burst prevention, large‐diameter drilling pressure relief technology have been widely used in coal burst mines in China. Engineering practice shows that drilling pressure relief has obvious time‐effect. Through the establishment of drilling pressure relief numerical model, the evolution law of stress field and plastic zone in different periods after drilling was studied. The evolution of the pressure relief effect of large‐diameter borehole is closely related to the development degree of cracks around the borehole. The stress transfer process after drilling can be divided into the pressure relief beginning stage, rapid pressure relief stage, and pressure stable stage. The pressure relief time effect is affected by borehole parameters. When the diameter increases from 100 to 250 mm, the time required for the stress transfer process is reduced by 50%. When the borehole spacing is reduced from 2 to 0.5 m, the time required for the stress transfer process is reduced by 33.3%. Changing the borehole depth has no significant effect on the stress transfer rate. Therefore, in the coal burst risk roadway, pre‐relief should be carried out to leave sufficient time for large‐diameter boreholes to make pressure relief work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.