Abstract
This study was undertaken to test the hypothesis that gamma-aminobutyric acid (GABA) is an endogeneous neurotransmitter regulating the activity of a class of putative nociceptive modulatory neurons (termed "off-cells") in the rostral ventromedial medulla (RVM) of the barbiturate-anesthetized rat. Off-cells, which are believed to correspond to the RVM output neuron that inhibits nociceptive processing at the level of the spinal cord, exhibit an abrupt pause in firing that begins immediately prior to the occurrence of the tail flick response (TF), a nocifensive reflex evoked by application of noxious heat to the tail. Single-unit recording and iontophoretic techniques were used to examine the ability of the GABAA receptor antagonist bicuculline methiodide (BIC) to antagonize selectively the characteristic off-cell pause. Iontophoretic application of BIC (5-30 nA) blocked the TF-related pause in each of the off-cells tested. This effect of BIC was generally slow in onset, and outlasted the period of application by several minutes. BIC iontophoresis also eliminated the cyclic alternation between active and silent periods that is often displayed by off-cells in lightly anesthetized rats. BIC application did not have a consistent effect on the firing of two other classes of RVM neurons ("on-cells" and "neutral cells"). Iontophoretically applied BIC antagonized the inhibitory effect of iontophoretically applied GABA, but not that produced by glycine. The glycine receptor antagonist strychnine did not mimic the action of BIC on off-cell activity. These data demonstrate antagonism of a synaptically evoked response using iontophoretic application of BIC, and provide strong evidence that the inhibitory neurotransmitter GABA mediates the TF-related off-cell pause. Taken together with behavioral experiments demonstrating that a GABA-mediated inhibitory process within RVM is crucial in permitting execution of the TF response, the present observations point to the significant functional relevance of GABA transmission within RVM in modulation of nociception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.