Abstract

Sc x Al1−x N is a promising piezoelectric material for radio frequency communication applications with excellent electro-acoustic properties. However, the growth of abnormally oriented grains is widely observed in the Sc doped AlN films deposited by sputtering. In this work, for the first time, the impact of the abnormal grains in the Sc0.15Al0.85N films on the performance of bulk acoustic wave resonators and filters is systematically evaluated by both simulations and measurements. The correlation between the device performance and the abnormal grain parameters, including the density, dimension, crystal orientation, growth height and the total volume of the abnormal grains, is evaluated and quantified. Simulation results show that the total volume of all abnormal grains in the whole device is the most critical factor among the parameters. Abnormal grains with randomly distributed parameters and around 6% total volume of the film can degrade the effective coupling coefficient of the resonator from 13.6% to 11%, leading to a 10.6% decrement of the filter bandwidth. Wafer-level device characterizations and measurements are performed, and the results are consistent with the simulations. This study provides a practical method for predicting the performance of the resonators and filters with abnormal grains, and a guideline for film quality evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.