Abstract

Cement manufacturing presents substantial environmental challenges due to the volume of waste generated, including cement ash. Therefore, it is crucial to discover novel methods to utilize cement waste effectively. This study aimed to examine the impact of different concentrations of cement ash (1, 1.5, 2, and 2.5 g) on the conductivity of PVA/TEOS/HCl (PTH) gel electrolyte materials. The primary goal was to determine the ideal concentration of cement ash that would yield maximum conductivity. The research findings demonstrated that the PTH2.5CA sample attained the greatest conductivity of 2.78 mS/cm when adding 2.5 g of cement ash. In addition, this material exhibits a capacity of 0.354 mAh, a specific capacity of 0.12826 mAh/g, and a density capacity of 0.11813 mAh/cm2. The power and power densities were measured as 6.48 mW/cm2 and 25.94 mW, respectively. These findings offer promising prospects for implementing sustainable practices in the industry and highlight the viability of utilizing cement waste as a significant element in battery membrane materials. This technique addresses environmental issues related to cement waste and contributes to advancing a more eco-friendly waste management system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call